首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2380篇
  免费   302篇
  国内免费   335篇
化学   1081篇
晶体学   42篇
力学   780篇
综合类   45篇
数学   206篇
物理学   863篇
  2024年   2篇
  2023年   18篇
  2022年   30篇
  2021年   66篇
  2020年   90篇
  2019年   69篇
  2018年   65篇
  2017年   114篇
  2016年   121篇
  2015年   108篇
  2014年   86篇
  2013年   220篇
  2012年   124篇
  2011年   148篇
  2010年   106篇
  2009年   149篇
  2008年   140篇
  2007年   139篇
  2006年   154篇
  2005年   150篇
  2004年   126篇
  2003年   110篇
  2002年   91篇
  2001年   73篇
  2000年   65篇
  1999年   66篇
  1998年   54篇
  1997年   43篇
  1996年   41篇
  1995年   53篇
  1994年   45篇
  1993年   28篇
  1992年   19篇
  1991年   24篇
  1990年   15篇
  1989年   19篇
  1988年   11篇
  1987年   5篇
  1986年   5篇
  1985年   8篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1971年   2篇
  1957年   1篇
排序方式: 共有3017条查询结果,搜索用时 218 毫秒
21.
PBO fiber is one of the most promising reinforcements in resin matrix composite because of its excellent mechanical properties. However, the inert and smooth surfaces make it the poor interface adhesion with resin matrix, which seriously limits the application in composites. In this article, we report a method to modify the surface of PBO fibers with 2,2-Bis (3-amino-4-hydroxyphenyl) hexafluoropropane(BisAPAF)in supercritical CO2 to enhance interfacial properties. Chemical structures, surface elemental composition and functional groups, and surface morphology were characterized by FT-IR spectrometer, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), respectively. The mechanical properties of the samples were tested by a tensile tester. Static contact angle and microdebonding tests were used to characterize the wetting ability and interfacial shear strength (IFSS) of the fiber and epoxy resin. The results showed that the BisAPAF could be solved in scCO2 and introduced more groups, –NH2, –OH, and –CF3 on the fiber surface, resulting in the mechanical properties and the wettability of PBO fiber slightly improved. Moreover, the fiber surface roughness was also increased obviously. The IFSS between the modified PBO fiber and epoxy resin increased from 8.18 MPa to 31.4 MPa when the treating pressure was 14 MPa. In general, the method to modify PBO fibers surface using BisAPAF in scCO2 can effectively improve their interfacial properties.  相似文献   
22.
Energy storage using dielectric capacitors is a growing area of research and development. However, designing a highly performing dielectric capacitor is still a challenge. Despite the excellent results achieved in lead-based dielectrics, lead-free substitutes are essential because of the environmental concerns associated with lead-based products. The lead-free 1?x (0.94NaNbO3? 0.06SrZrO3)+ x Bi2O3 ceramics abbreviated NNSZ + xB for x = 0.0, 0.05, 0.1, 0.15, and 0.20 was fabricated via solid-state reaction. A recoverable energy density of 2.93 J cm?3 was obtained for NNSZ+0.1B, associated with high thermal stability (25–130 °C), excellent cycling (N = 105), and high efficiency (η) of 83.5%. Moreover, the introduction of Bi2O3 significantly improved the electrical insulation (?r at 1 kHz = 1608 and tan δ = 0.0038) and breakdown strength (380 kVcm?1) of NNSZ+0.1B by minimizing the formation of sodium, bismuth, and oxygen vacancies. The results obtained in this study provide a benchmark for further investigations on NaNbO3-based ceramics. More importantly, this study suggests that NNSZ + xB ceramics can be used in pulsed power technology.  相似文献   
23.
This study investigated the influence of organic sample solvents on separation efficiency of basic compounds under strong cation exchange (SCX) mode. The mixtures of acidic aqueous solution and organic solvent such as acetonitrile, ethanol, methanol and dimethyl sulfoxide (DMSO) were tested as sample solvents. For later-eluting analytes, the increase of sample solvent elution strength was responsible for the decrease of separation efficiency. Thus, sample solvents with weak elution strength could provide high separation efficiencies. For earlier-eluting analytes, the retention of organic sample solvents was the main factor affecting separation efficiency. Weakly retained solvents could provide high separation efficiency. In addition, an optimized approach was proposed to reduce the effect of organic sample solvent, in which low ionic solvent was employed as initial mobile phase in the gradient. At last, the analysis of impurities in hydrophobic drug berberine was performed. The results showed that using acidic aqueous methanol as sample solvents could provide high separation efficiency and good resolution (R > 1.5).  相似文献   
24.
The effect of plasma screening on the dynamic dipole polarizability (DPP) of two‐electron ions Be2+, B3+, and C4+ has been investigated using highly correlated exponential wave functions within the framework of pseudostate summation technique and Debye screening concept. Plasma‐screening effect on the oscillator strengths (OS) of the ultraviolet and visible series has also been investigated for the systems Li+, Be2+, B3+, C4+. The DPP are reported as functions of screening parameters. The OS for S‐P transitions are also reported for various screening parameters. The OS and dynamic polarizability show interesting behavior with increasing screening strength and nuclear charge. © 2015 Wiley Periodicals, Inc.  相似文献   
25.
Stepwise protonation constants of two purine nucleosides (adenosine and guanosine) were determined at different temperatures (293.15 to 308.15) and various ionic strengths (0.101 to 3.503 mol · kg−1 NaClO4) using a combination of potentiometric and spectrophotometric method. The thermodynamic parameters (i.e. enthalpy change, ΔH, and entropy change, ΔS) of the protonations were calculated at different temperatures using van’t Hoff and virial equations. The dependence of the protonation constant on ionic strength is modeled by a Debye–Hückel type equation and discussed. Finally, the protonation constants of the nucleosides and the enthalpy change of protonations were determined at zero ionic strength.  相似文献   
26.
AlTiCrN coating was prepared on the surface of YT14 tungsten carbide cutting tools by cathodic arc ion plating with Ti, Al and Cr as targets. The surface morphologies, interface energy spectrum, phase and elements' binding energy of the coatings were observed with SEM, EDS, XRD and XPS, respectively, and bonding strength of the coating interface was measured with scratch tester. The results show that the phases of AlTiCrN coating are mainly composed of AlN, CrN and TiN, the crystal plane of (111) has a strong preferred orientation. The concentrations of Al, Ti, Cr, N in the coating are higher than those in the substrate, showing the gradient diffusion distribution at the bonding interface, while C atoms of the substrate have diffused into the lattices of TiN, AlN and CrN to form an obvious interdiffusion layer, and the average bonding strength of coating interface is 57.65 N. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
27.
Studies are presented on dependency of dynamic interlaminar shear (ILS) strength on the experimental technique used for a typical plain weave E-glass/epoxy composite. Dynamic ILS strength was determined based on two experimental techniques, namely torsional split Hopkinson bar (TSHB) apparatus using thin walled tubular specimens and compressive split Hopkinson pressure bar (SHPB) apparatus using single lap specimens. The results obtained from these techniques are compared. In general, it is observed that dynamic ILS strength for composites obtained by TSHB testing using thin walled tubular specimens is lower than the dynamic ILS strength obtained using single lap specimens in compressive SHPB. The issues involved in TSHB testing of thin walled tubular specimens made of composites are discussed and the reasons for reduced dynamic ILS strength using thin walled tubular specimens are highlighted. Finite element analysis (FEA) of thin walled tubular specimens made of composite and resin subjected to quasi-static torsional loading is presented. Using FEA results, the reasons for lower ILS strength of composite thin walled tubular specimens are substantiated.  相似文献   
28.
结合介观动力学方法和三维弹簧格子模型, 研究了嵌段共聚物相容剂对相容性较差的聚合物二元共混体系力学性能的影响. 在适当范围内不断增加嵌段共聚物相容剂的用量, 研究了相容剂含量对体系杨氏模数及拉伸强度的影响, 同时也对不同体系材料的破碎位点进行了分析. 结果表明, 未加入相容剂的二元共混体系在拉伸模拟中表现出较低的拉伸强度, 而适量添加相容剂可以显著提升材料的拉伸强度, 随着相容剂含量的增加, 共混体系的破碎位点会发生转移并最终改善材料的整体性能. 而相容剂的加入对体系杨氏模数的影响较小. 该连续模拟方法为关联聚合物复合体系的微观结构和宏观力学性能提供了一条高效的途径.  相似文献   
29.
The influences of both the molecular structure and the melt viscosity differences between Poly(lactic acid) (PLA) and polycarbonate (PC) on the interpenetration of molecular chains at the interface were investigated by comparing the dynamic mechanical properties and morphologies of the as‐prepared PLA/PC solution‐casting blends with those of their corresponding annealed (180°C, 8 h) samples or PLA/PC melt blends. Additionally, two chain extenders containing epoxy groups (ADR and TGDDM) were used to improve the interfacial strength. Subsequently, the interpenetration of PLA and PC molecular chains at the interface was also surveyed. Finally, the effects of the morphology formed by after adding ADR or TGDDM on the impact property, and heat resistance were discussed. The results showed that there was no interpenetration of molecular chains at the interface in PLA/PC melt blends because of the serious hindrance of the molecular structure and the melt viscosity differences. Although the interfacial strength achieved significant increase after adding ADR or TGDDM, the increase of the interfacial strength should be caused by the connection of ADR or TGDDM molecules with PLA and PC molecules at the interface through chemical bonds rather than the entanglements of PLA and PC molecular chains because of no interpenetration of PLA and PC molecular chains at the interface. Thus, the morphology formed after adding ADR or TGDDM is still the type of complete phase separation, which may be the most suitable morphology for achieving high impact and heat resistance PLA/PC blends because these two properties strongly depend on the crystallinity of PLA phase. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
30.
Polylactide (PLA) was plasticized by polyethylene glycols (PEGs) with five different molecular weights (Mw = 200–20,000 g/mol). The effects of content and molecular weight of PEG on the crystallization and impact properties of PLA were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, and V‐notched impact tests, respectively. The results revealed that PEG‐10,000 could significantly improve the crystallization capacity and impact toughness of PLA. When the PEG‐10,000 content ranged from 0 to 20 wt%, the increases in both V‐notched Izod and Charpy impact strengths of PLA/PEG‐10,000 blends were 206.10% and 137.25%, respectively. Meanwhile, the crystallinity of PLA/PEG‐10,000 blends increased from 3.95% to 43.42%. For 10 wt% PEG content, the crystallization and impact properties of PLA/PEG blends mainly depended upon PEG molecular weight. With increasing the Mw of PEG, the crystallinity and impact strength of PLA/PEG blends first decreased and then increased. The introduction of PEG reduced the intermolecular force and enhanced the mobility of PLA chains, thus improving the crystallization capacity and flexibility of PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号